Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Chemical Engineering Journal ; 451, 2023.
Article in English | Scopus | ID: covidwho-2245424

ABSTRACT

In the wake of the recent COVID-19 pandemic, antibiotics are now being used in unprecedented quantities across the globe, raising major concerns regarding pharmaceutical pollution and antimicrobial resistance (AMR). In view of the incoming tide of alarming apprehensions regarding their aftermath, it is critical to investigate control strategies that can halt their spread. Rare earth vanadates notable for their fundamental and technological significance are increasingly being used as electrochemical probes for the precise quantification of various pharmaceutical compounds. However, a comprehensive study of the role of the cationic site in tailoring the response mechanism is relatively unexplored. Hence, in this work we present a facile hydrothermal synthesis route of rare earth vanadates TVO4 (T = Ho, Y, Dy) as efficient electrocatalyst for the simultaneous detection of nitrofurazone (NF) and roxarsone (RX). There appears to be a significant correlation between T site substitution, morphological and the electrochemical properties of rare earth metal based vanadates. Following a comparative study of the electrochemical activity, the three rare-earth vanadates were found to respond differently depending on their composition of T sites. The results demonstrate that Dy-based vanadate displays increased electrical conductivity and rapid charge transfer characteristics. Thus, under optimal reaction conditions DyVO4- based electrodes imparts outstanding selectivity towards the detection of NF and RX with an extensive detection window of NF = 0.01–264 µM & RX = 0.01–21 µM and 36–264 µM and low detection limit (0.002, 0.0009 µM for NF and RX, respectively). In real-time samples, the proposed sensor reveals itself to be a reliable electrode material capable of detecting residues such as NF and RX. © 2022 Elsevier B.V.

2.
Environmental Engineering Research ; 27(4), 2022.
Article in English | Web of Science | ID: covidwho-2121671

ABSTRACT

Several drugs have sparked interest as potential COVID-19 treatment options. Doxycycline (DOX) has been widely used with other potential agents to reduce COVID-19-induced inflammation. DOX and OFLX, both well-known antimicrobial and anti-inflammatory drugs, were chosen as model pollutants. Fe, Cu-codoped TiO2-SiO2 was synthesised as a novel photocatalyst active under sunlight irradiation to treat model pollutants. The synthesised catalyst samples were meticulously characterised using various techniques to evaluate their morphological, optical, and structural properties. The results of BET analysis showed that the TSFC1 sample has a large specific surface area of 288 m(2)g(-1). Maximum degradation of DOX and OFLX (about 98%) was achieved with the TSFC1 catalyst. The photocatalytic reusability was investigated for up to seven successive cycles, and the composite particles maintained their high photodegradation activity for DOX and OFLX. TFSC1 composite, in particular, demonstrated high catalytic activity as well as excellent recovery potential, and its combination with solar light, silica, and dopants can be introduced as a promising strategy for efficiently destroying both DOX and OFLX antibiotics. This study highlights the feasibility of hybridising doped dual semiconductor nanostructures in implementing solar light-powered pharmaceutical wastewater degradation.

3.
Materials Today Chemistry ; 24:100862, 2022.
Article in English | ScienceDirect | ID: covidwho-1773656

ABSTRACT

Zinc selenide microspheres were constructed using a simple hydrothermal technique at 180°C. It was ultrasonically treated with reduced graphene oxide modified with octadecylamine alkyl amine to form a hybrid nanocomposite. The optical, structural, and functional analysis by ultraviolet (UV) absorbance, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy revealed the crystal nature of the microspheres and the successful formation of the nanocomposite. Field emission scanning electron microscopy and transmission electron microscopy were done to study the morphological properties of the material. It was further used to fabricate a dual-modality sensor using both electrochemical and absorbance techniques for the detection of antimalarial drug chloroquine phosphate (CQP), which was used for the treatment of COVID-19 (SARS-CoV-2) virus. For electrochemical detection, the sensor showed a very low detection limit of 1.43 nM at a linear working range of 0.199–250.06 μM and a high sensitivity of 43.912 μA/μM/cm2. For UV-based detection, the sensor showed a very low detection limit of 6.88 nM at a linear working range of 0.045–7.324 μM. The sensor showed excellent analyte recovery rate for real-time analysis in biological as well as environmental samples. The results suggested that the sensor is effective for the detection of CQP with feasibility for future commercialization.

SELECTION OF CITATIONS
SEARCH DETAIL